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A method of sampling the rotation function is presented which requires fewer sample points, produces 
undistorted maps whose coordinates are locally orthogonal, and associates equal volumes with all 
sample points. 

Introduction 

During the past decade or so, a number of applications 
of the rotation function of Rossmann & Blow (1962) 
and of other related methods (Huber, 1965; Nordman 
& Nakatsu, 1963; Tollin & Cochran, 1964; Lattman 
& Love, 1969) have been reported. These methods have 
in common the calculation of an index of agreement or 
overlap between two three-dimensional structures, as a 
function of their relative orientation. A typical example 
is the function: 

R(C) = ~ F2(l~h)I(h), (1) 
h 

used by Lattman & Love to search for the orientation 
at which the diffraction pattern F 2 from an isolated 
molecule is in best coincidence with the pattern I(h) 
from a crystal. The matrix C is a rotation operator 
which varies the relative orientation of the two pat- 
terns, R is the rotation function, and the summation is 
taken over the reciprocal lattice vectors h of the crystal. 

The matrix C is usually expressed in one of two 
systems of angular variables. The Eulerian angles 01, 
02, 03 (0), well known in classical mechanics, are de- 
scribed by Goldstein (1959), and by Rossmann & 
Blow. Tollin, Main & Rossmann (1966) have shown 
that the symmetry of the rotation function appears in 
a particular simple way through the use of these angles. 

The second angular system makes use of the theo- 
rem that any rotation can be accomplished by an ap- 
propriate spin about a properly chosen axis. The 
spherical polar angles, (o and V, specify the longitude 
and colatitude of this axis, and the azimuthal angle, 
2', specifies the spin about it. This system is labor- 
saving whenever either the direction or order of a non- 
crystallographic axis of symmetry can be anticipated. 

Lattman & Love, among others, have evaluated R 
on a grid having equal, constant steps in 0~, 02, 03. This 
grid produces uneven and inefficient sampling which 
is costly in computer time. Since rotation function cal- 
culations are extremely expensive, this difficulty is not 
trivial. In addition, the apparent breadth and separation 
of peaks are strongly dependent on their location. 
Plots of the rotation function are consequently in- 
convenient to deal with. Finally, it is well known that 

the integrated density beneath a peak in a correlation 
function is often a better measure of its importance 
than its height. Since points in this grid do not all have 
equal volumes associated with them, it is difficult to 
calculate such integrated densities. 

For these reasons, the above-mentioned grid in 0 
is unsatisfactory. Comparable difficulties have also 
arisen when using analogous grids in the angles ~0, V, Z 
(?). Described herein is a procedure for the efficient 
selection of sample points using either angular system. 
The procedure decreases computation time and distor- 
tion, and associates approximately equal volumes with 
the sample points. 

Methods 

Functions defined in a three-dimensional, Euclidian 
space, such as electron density functions, are custo- 
marily evaluated at the nodes of a sampling lattice 
whose base vectors are roughly equal in length and 
roughly orthogonal. The volumes associated with all 
sample points are equal. To extend these notions to the 
angular space explored in equation (1), first an intui- 
tively pleasing definition of the 'distance' between two 
orientations is adopted which then is shown to lead 
automatically to orthogonality of small increments in 
the angular variables. 

Since any two orientations of a body are related by 
a single rotation Z, it seems appropriate to define the 
'distance' between these orientations as the magnitude 
of the spin 2' which transforms one into the other. More 
formally, if Ol and 02 are two orientations which are 
related to a standard orientation O by the operators 
C(01) and C(02), then the distance between Oi and 02 
is defined as the magnitude of the angle Za which satis- 
fies the equation: 

c(o2) = P(~0, ~ , ,zd)c(~o.  (2) 

Here, o~ and 02 are angular triples, and the matrix P 
transforms O1 into 02. 

Adjacent sample points in the rotation function 
represent orientations which differ by small changes in 
the defining angular variables. It is therefore desirable 
to calculate the distance between such nearby orienta- 
tions. Eulerian angles are considered first. It happens 
that the results are most useful if a linear recombina- 
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tion of the conventional Eulerian angles is defined. We 
use the quasi-orthogonal Eulerian angles 0+, 02, O_ 
(0+) where 

8 + = 0 1 + 0 3 ,  8 _ = 0 1 - - 0 3 .  (3) 

These variables have a certain physical plausibility. 
When 02 is near 0 or n, the rotations 0t and 03 are 
strongly coupled. Here, on the other hand, when 8E = O, 
changes in 0_ have no effect on orientation; all 
dependence appears in 8+. Similarly, when 02=n all 
the dependence appears in 8_ and changes in 8+ have 
no effect. 

To solve equation (2) for Xd, both sides are multiplied 
by C(oh), the transpose of C, to yield: 

P (~ 0 ,  V,Za)= C(0+, 82, 0_). C(8+ + A8+, 82 + dO2, 
8_ + AO_) , (4) 

where the quasi-orthogonal angles and the small 
increments therein have been specifically inserted. 
Since equation (4) is a matrix equation, it is true 
element by element. Equating the sum of the diagonal 
elements on both sides of equation (4): 

3 3 
P,,= 1 + 2 cos (Zd) = ~, C,j(O±). C,j(O± +AO+) (5) 

i=1 i,j=l 

where Pij and Cij, the elements of P and C, are given 
explicitly in Table 1. Inserting these quantities into 
equation (5) and making use of expansions of the form" 

sin (co +,do) = sin (co) + Am. cos (co) 
cos  cos  - s in 

(A_A_~_ z) sin 
- " cos (co), (6) 

it follows that 

Zd~.A8+2 2 . COS 2 ( 0 2 / 2 ) +  A8~ + AOZ__ . s in  E (02/2) . (7) 

Higher-order terms have been ignored. 
We see that X~ z, the square of the distance between 

nearby orientations, is given by a sum of terms 
quadratic in the angular increments. This Pythagorean 
form shows that the quasi-orthogonal Eulerian angles 
are, in fact, locally orthogonal. Use of the conventional 
Eulerian angles in equations (4) to (7) would have gene- 
rated a term containing AOIA83 in (7), demonstrating 
their nonorthogonality. 

When R is calculated as a function of 0+_, the proce- 
dure for uniform sampling is clear. Angular steps are 
taken that keep constant the quantities AO+. cos (02/2), 
A82, AS_ . sin (82/2). If sections of constant 02 are cal- 
culated, the steps in 8+ and 8_ do not vary within a 
section. The steps between sections are also constant. 

Fig. l(a) and (b) display the same rotation function 
section calculated using conventional and quasi- 
orthogonal Eulerian angles. Because of the small value 
of 82, the peak in the conventional map is greatly 
elongated in one direction. When the same peak is 
plotted using the methods just described, it has a 
natural and fairly symmetrical shape. 

Tollin et al. (1966) have given an elegant discussion 
of the symmetry of the rotation function, and they 
describe what range of 0 must be explored under 
various circumstances. The corresponding range of 0+ 
is easily derived. For example, when the functions 
being compared have no symmetry, the volume 
bounded by - n _< 81 < n, 0 _< 0E < n, -- n _< 03 < n must 
be explored. The corresponding region for 8+ and 8_ 
is diamond shaped, and is shown in Fig. 2(a). For 82 
there is no change. Simultaneous translations of + 2n 
in 8+ and 8_, identity operations, shift the two cross- 
hatched triangles in Fig. 2(a) to the positions shown 
in Fig. 2(b), providing a convenient rectangular range 
in the 8+0_ plane. Analogous regions can be derived 
when there is symmetry in the rotation function. 

For a given angular step D, a conventionally sampled 
map requires (2n/D) 2 grid points to explore the region 
in Fig. 2(a). For orthogonal sampling, this number is a 
function of 82 and is given by On~D). [cos (02/2)] x 
(2n/D). [sin (02/2)] = (2n/D) 2 • sin (02). The mean value 
of sin (02) is 2/n, and so an orthogonally sampled map 

Table 1. (a) Matrix C in terms of  Eulerian angles 81, 82, 83 and (b) matrix C in terms of  rotation angle Z and spherical 
polar coordinates gt, (o 

(a) 

- s i n  01 cos  02 sin 03 
+ c o s  0x cos 03 

- s i n  01 cos  02 COS 03 
- c o s  01 sin 03 

sin 01 sin OZ 

(b) 
cos Z 

+ sin2 ~, cos2 ~0(1 -- cos 1") 

sin V cos ~ cos ~0 (1 --cos Z) 
+ sin e sin ~0 sin X 

- s i n 2  ~, sin ~0 cos ~0(1 -cos X) 
- cos ~u sin x 

COS O1 COS 02 sin 03 
+ s i n  O1 cos 03 

COS O1 COS 02 COS 03 
- s i n  01 sin 03 

- c o s  01 sin OZ 

sin ~' cos ~, soc tp(1 --cos Z) 
--sin ~, sin tp sin Z 

cos 
+ COS 2 g/'( | -- COS X) 

-sin ~, cos ~u sin ~0(1 -cos 1') 
+ sin ~' cos ~0 sin Z 

sin 02 sin 03 

sin 02 cos 03 

cos 02 

--sin E ~, cos ~ sin ~(1--cos  Z) 
+ cos ~v sin Z 

--sin ~, cos ~ sin (p(1 --cos Z) 
--sin ~u cos (p sin Z 

cos Z 
+sinE ~ sinE tp(1--COS Z) 
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requires only  2/zc t imes as m a n y  sample  points  as a 
conven t iona l ly  sampled one. 

Because the scales a long  the 0+ and  0_ axes change  
as a func t ion  o f  Oz, the range of  0+, as it appears  on 
the pr in ted  page, has a ra ther  pecul iar  shape. It looks  
rough ly  like a pair  o f  wedges placed base-to-base in 
the p lane  02 = zc/2, with the edges forming  a single row 
in the p lane  Oz=O and  a single co lumn  in the p lane  
0 2 = ~ .  
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"//~/z tz" //// 
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/ /  
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n [ / 
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- n / 2  

I 

"°'" I 

,J 

0+ 
5n/2 

(b) 

Fig. 1. (a) A section at 02= 15 ° from the rotation function, 
comparing the diffraction patterns from an isolated molecule 
and crystal of sperm whale myoglobin. The coordinates 01 
and 03 have been sampled in steps of 5 ° . The peak is ex- 
tremely extended in one direction and difficult to interpret. 
(b) The same section calculated with respect to 0+ and 0-. 
Steps of" 5 ° in 0+ and 35 ° in 0- were taken. The peak is now 
much more symmetrically shaped, and only about one 
seventh as many points were required. 
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/ /  

/ / / / A  
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Fig.2. (a) A square asymmetric unit in the 0103 plane. With 
respect to the 0+ and 0- axes, also shown, it is inconveniently 
oriented for plotting. (b) The hatched triangles in (a) have 
been moved by identity translations of _+2re in 0j and 03 
to yield a rectangular area better suited to the 0+ and 0- 
axes. 

O r t h o g o n a l  sampl ing  also ensures tha t  equal  volumes  
are associated with each sample  point .  The  vo lume of  
the para l le lep iped  with edges AO+, AOz, AO_ is: 

V=  sin (02/2) cos (Oz/2)AO+AOzAO_ 
= ½ sin (02)AO+AOzAO_, 

(8) 

A C 28B - 6 
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a quantity which is constant throughout the map. 
The situation for the angles q~, ~',Z is dealt with very 

briefly. Expressing C in equation (4) in terms of these 
angles, the distance 2'a as a function of the angles and 
their increments can be calculated, such that 

2"2=A2"2+4 sin 2 (2"/2)A¢,2+4 sin 2 (2'/2) sin 2 (~,)A~02 . 
(9) 

These variables are, therefore, also locally orthogonal. 
Maps computed as functions of q} are usually plotted 
on sections of constant 2', with v/ and ~0 being repre- 
sented on the surface of a sphere. In this way, equal 
areas on the sphere correspond to equal areas in q~ 
space. There is, however, a factor 4 sin 2 (2'/2) weighting 
the different levels [see equation (9)]. When 2' is small, 
large areas and lengths on the sphere correspond to 
much smaller quantities in q~ space. Thus, peaks that 
appear widely separated may actually be only a small 
distance apart. Note also that the local orthogonality 
of ~0 and ~u is preserved on the sphere, so that the selec- 
tion of sample points is fairly straightforward. 

There have been two previous attempts to achieve 
satisfactory sampling of the rotation function. Tollin 
& Cochran (1964) searched a Patterson function with a 
featureless disc. This rotational search, therefore, con- 
sists of placing the disc normal at representative points 
on the unit sphere, and the distance between orienta- 
tions is the great-circle distance between the positions 
of the tip of the normal vector. For small distances 
this works out to be: 

Xa2 = sin 2 (I//),4(,0 2 + A ~  2 . ( 1 0 )  

Tollin & Cochran chose, in an ad hoc way, a sampling 
technique which corresponds to the distance equation 

2"2=(2gt/rc)ZA(o 2 + Agt 2 . (11) 

For 9' near re/2, equations (10) and (11) are nearly 
identical. For ~ near 0, Tollin & Cochran choose steps 
in ~0 which are too large by a factor z~/2. There are few 

sample points in this range, however, so that their 
scheme is a very good one. 

In a paper brought to the author's attention after 
this work was completed, Burdina (1971) has investi- 
gated many of the problems discussed herein. Choos- 
ing a metric like that defined in equation (2) he derives 
an equation like equation (8), in terms of conventional 
Eulerian angles. The sampling scheme he presents, 
however, does not have the distortion-free character 
of the technique presented here. In addition, Burdina 
discusses some interesting problems in the symmetry 
of the rotation function. 

Conclusions 

This paper has presented a method for sampling the 
rotation function which reduces computation time, 
yields undistorted maps, and associates equal volumes 
of angle space with each sample point. 

I should like to thank Drs Warner Love and Wayne 
Hendrickson for helpful discussions. This work has 
been supported by grant AM02528 from the USPHS, 
and by a grant for computing from the Johns Hopkins 
University. 
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